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Abstract: The power transformer is a key piece of equipment in power plants and substations. 
However, abnormal oil temperature in power transformers accelerates insulation aging, shortening 
their lifespan and leading to accidents. Therefore, predicting and monitoring oil temperature is 
crucial. To overcome the reliance on experience and rules in traditional prediction methods, an oil 
temperature forecasting method based on a multi-model combination under the Stacking framework 
was proposed. Taking into account the differences in data observation and training principles 
among various algorithms, fully leveraging the strengths of each model, we construct a Stacked 
ensemble learning oil temperature prediction model embedded with multiple machine learning 
algorithms. The base learners of the model include Light Gradient Boosting Machine (LightGBM) 
and Category Boosting (CatBoost).The experimental results indicate that the oil temperature 
prediction method based on the Stacking ensemble learning approach with multiple model fusion 
achieves a high level of prediction accuracy. 

1. Introduction 
Accurate assessment of power transformer load capacity and insulation life is critical for safety 

and depends on accurate prediction of abnormal oil temperatures.[1] 
Currently, oil temperature prediction relies on formula derivation, but these formulas often have 

strict conditions and overlook the impact of environmental changes, requiring improved accuracy[2-

3]. Jia X et al. employed numerical methods to construct a theoretical thermal model for 
transformers based on formula derivation[4]. However, this model involves numerous condition 
parameters, often requiring collaboration from multiple parties for practical engineering 
applications. 

In recent years, applying machine learning methods for predicting transformer oil temperature 
has become common. Alerskans E et al. employed neural networks for top-layer oil temperature 
prediction[5], but the non-linear fit between inputs and outputs lacks interpretability and physical 
significance, leading to potential overfitting. Li P et al. utilized a Support Vector Machine (SVM) 
model to construct an oil temperature prediction model and achieved favourable outcomes[6]. The 
cited literature singularly employed a predictive model for oil temperature, however, considering 
the extensive hypothesis space in oil temperature prediction, multiple hypotheses could yield 
comparable performance on the training set.  

While depending on a single model may jeopardize generalization performance due to its 
inherent stochastic nature, the Stacking prediction approach emphasizes the diversity in data 
observations among predictive algorithms. This allows for the training of a superior composite 
model that harnesses different strengths and addresses the limitations of a single model through 
complementary learning. 

2. Related Techniques 
2.1. GBDT 

The Gradient Boosting Decision Tree (GBDT) is an outstanding machine learning technique 
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renowned for its powerful predictive performance [7]. The essence of this algorithm lies in the 
progressive construction of a series of decision trees, where each tree aims to correct the prediction 
errors of its predecessor. This iterative process, utilizing a gradient descent optimization approach, 
significantly enhances the overall performance of the model. 

Given a dataset D={(xi,yi):i=1,2,...,n, xi∈R,yi∈R}, where n is the number of samples, each 
sample has p features. Given the loss function L(y, f(x)), the algorithmic steps of GBDT are as 
follows: 

(1) Initialize. fθ(x) = 0. 
(2) Compute the residuals.rm=yi - fm-1(xi), i=1,2...,n. 
(3) Fit a regression tree T(x, Θm) to learn the residuals. 
(4) Update.fm(x)=fm-1(x)+T(x, Θm). 
(5) Repeat the iterative steps (2) to (4), minimizing the prediction error to obtain a GBDT model. 

2.2. LightGBM 
Light Gradient Boosting Machine (LightGBM), a variant of GBDT developed by Microsoft[8], is 

designed to provide efficient and scalable solutions for large-scale machine learning tasks. 
Introduced to overcome challenges associated with processing massive datasets, LightGBM 
employs a distributed computing approach and histogram-based learning, enabling faster and more 
effective model training. Its innovative features contribute to improved performance in various 
applications, making it a prominent tool in the realm of machine learning research and applications. 

2.2.1. Histogram-based Decision Tree Algorithm 
LightGBM innovatively addresses the computational inefficiencies of traditional GBDT 

algorithms like Extreme Gradient Boosting (XGBoost)[9], which rely on numerical pre-sorting for 
node splitting. Instead, LightGBM employs a histogram-based approach, discretizing continuous 
data into bins during preprocessing, reducing time complexity and memory usage. This strategic use 
of histograms enhances the efficiency and scalability of LightGBM, making it a powerful choice for 
large-scale machine learning tasks. 

2.2.2. The Leaf-wise Leaf Growth Strategy with Depth Constraints  
LightGBM adopts a leaf-wise leaf growth strategy with depth constraints, which is a distinctive 

feature in its algorithmic design. Unlike traditional level-wise growth, the leaf-wise strategy 
expands the tree by growing the leaves with the highest information gain, allowing for a more 
efficient and adaptive approach. The depth limitation ensures controlled tree complexity, striking a 
balance between model accuracy and computational efficiency. This innovative combination 
contributes to LightGBM's ability to handle large-scale datasets while maintaining high predictive 
performance. 

2.3. CatBoost 
Category Boosting (CatBoost), an algorithm developed by the Russian search giant Yandex in 

April 2017, represents an innovative approach to gradient boosting[10]. As a gradient boosting 
algorithm, CatBoost demonstrates unique advantages in handling classification and regression 
problems, particularly excelling in the efficient treatment of categorical features without the need 
for extensive preprocessing. 

2.3.1. Ordered Target Encoding 
In CatBoost, the utilization of ordered target encoding represents a refined approach to encoding 

categorical features, akin to mean encoding but with a distinctive focus on reducing overfitting. 
CatBoost transforms all categorical feature values into numerical results using the following 
formula: 

 OptionCount+prior CatBoost Encoding
TotalCount 1

=
+

                                       (1)  
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CatBoost traverses each sample in sequence from the beginning to the end. In the formula, 
“OptionCount” represents the count of samples with a target value of 1 for the category to which 
the current sample belongs. The variable “prior” denotes the initial value of the numerator, 
determined based on initial parameters. “TotalCount” represents the count of samples, including the 
current sample, that share the same categorical feature value across all samples. 

2.3.2. Symmetric Decision Tree 
Unlike traditional decision trees, which tend to grow asymmetrically, the Symmetric Decision 

Tree algorithm maintains a balanced structure during its growth process. Each node in the tree 
attempts to split the data in a manner that maintains symmetry among its child nodes. This 
symmetry is achieved by considering both left and right child nodes equally, resulting in a tree 
structure that is more uniform and less prone to overfitting. 

3. Oil Temperature Forecasting Based on Multi-model by Stacking Ensemble Learning 
Stacking ensemble learning is a powerful paradigm in machine learning that involves combining 

the predictions of multiple models to achieve better overall performance than any individual 
model[11]. In the Stacking ensemble learning model, evaluating individual base learners and 
collectively assessing the combined impact of diverse base learners are essential steps to optimize 
predictive performance. 

In terms of the predictive capabilities of base learners, this paper, in the first layer of the 
Stacking model, employs LightGBM and CatBoost algorithms as base learners. This contributes to 
an overall improvement in the predictive performance of the model. To prevent overfitting, this 
study employs the Random Forest algorithm as the meta-learner in the second layer to rectify biases. 

In consideration of the foregoing, the model processing flowchart for oil temperature forecasting 
model is depicted in Figure 1. Feature Engineering refers to the process in machine learning and 
data analysis where operations such as creation, transformation, selection, and extraction are 
applied to raw data features to enhance model performance and data representation. Therefore, after 
analysing the dataset, statistical features are derived from the numerical columns, serving as a part 
of the input features for the model.  

Obviously, the training set for the meta-learner is generated from the outputs of the base learners. 
However, directly using the training set of the base learners to retrain the meta-learner can lead to 
severe overfitting when there is a significant mismatch between the distributions of the training set 
and test set. To prevent the repetition of learning in a two-layered model, this paper employs K-Fold 
cross-validation during the training of the base learners. In each iteration, the data is divided into K 
subsets based on the temporal dimension, with one subset used as the validation set and the 
remaining subsets used as the training set to train the base learners. This iterative process, 
performed K times, results in outputs with stronger generalization. 

LightGBM and CatBoost, as base learners, can each produce a prediction result for their 
respective test datasets. These results can be consolidated into a new dataset, which is of the same 
size as the original dataset, thus achieving feature transformation from input features to output 
features for all data. Finally, the combined data is input into the meta-learner for training, resulting 
in the prediction of transformer oil temperature. The selection of a Random Forest model as the 
meta-learner stems from the imperative to enhance the generalization capabilities of the model. 
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Figure 1 Flowchart for oil temperature forecasting 

4. Experiments and Result Analysis 
4.1. Experimental Environment 

The experimental environment was deployed on the CentOS7 operating system, utilizing an Intel 
E5-2686 v4 CPU with 8GB of RAM for the training process. The model code was implemented in 
Python 3.8. 

4.2. Experimental Dataset 
The experimental dataset comprises 1400 sets of power transformer data from a specific region 

in China. Each dataset represents the records of a single transformer over the course of one day, 
with data recorded at half-hour intervals, resulting in a total of 48 data points per set. The specific 
field explanations can be found in the field descriptions provided in Table 1. 
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Table 1 Field descriptions 

Field Name Type Description 
Transformers String Transformer ID 

Time String Timestamp, formatted as: Hour: Minute. 
L1 Float The external load value of the transformer 1. 
L2 Float The external load value of the transformer 2. 
L3 Float The external load value of the transformer 3. 
L4 Float The external load value of the transformer 4. 
L5 Float The external load value of the transformer 5. 
L6 Float The external load value of the transformer 6. 

oil_temperature Float Oil temperature 

4.3. Evaluation Metrics 
Expanding on the initial results, the evaluation metrics encompassed Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and R-squared (R²). MAE quantifies the average absolute 
differences between predicted and actual values, providing a measure of the model's overall 
accuracy. MSE extends this evaluation by considering the squared differences, emphasizing the 
impact of larger errors. R-squared (R²) complements these metrics, offering an indication of the 
proportion of variance in the dependent variable explained by the model. Together, these metrics 
provide a comprehensive assessment of the model's predictive performance, addressing accuracy, 
precision, and explanatory power. Their calculation formulas are expressed as follows, n is the 
number of data points, yi represents the actual values, ˆiy  represents the predicted values. 

1

ˆ1 n

i i
i

MAE y y
n =

= −∑                                                            (2) 

( )2

1

1M ˆSE
n

i i
i

y y
n =

= −∑                                                          (3) 

( )
( )

2

2 1
2

1

ˆ
1

n
i ii

n
ii

y y
R

y y
=

=

−
= −

−

∑
∑

                                                        (4) 

4.4. Experimental Results 
To validate the effectiveness of the proposed transformer oil temperature prediction model in this 

paper, the following control experiments were conducted. All model algorithms were based on the 
physical environment described in Section 4.1 and the dataset outlined in Section 4.2. The 
experimental results are presented in Table 2. 

Table 2 The experimental results 

Model MAE MSE R2 
Random Forest 1.97 7.82 0.95 

LightGBM 2.04 7.86 0.95 
CatBoost 2.08 8.08 0.95 

Multilayer Perceptron(MLP) 3.23 18.05 0.88 
Stacking Model 1.04 2.66 0.98 

Based on the experimental results presented above, it is evident that the Stacking Model 
achieved the minimum MAE and MSE among all compared models. Furthermore, the 
corresponding R2 reached the maximum value, indicating the effectiveness of the proposed model 
in addressing the transformer oil temperature prediction task. 
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5. Conclusion 
This paper draws inspiration from cutting-edge algorithmic techniques in the field of artificial 

intelligence and machine learning. In the Stacking ensemble algorithm model, a comprehensive 
utilization of LightGBM, CatBoost, and Random Forest algorithms is employed to observe the data 
space and structure from different perspectives. This enables each algorithm to complement the 
strengths and weaknesses of others. Through empirical tests, it is demonstrated that the proposed 
Stacking model achieves optimal predictive results for transformer oil temperature prediction. 

In future work, a more in-depth exploration will be conducted to address the following issues. 
During the training of the Stacking model, the extended computational time of base models poses a 
challenge in integrating a larger number of models. Therefore, it is imperative for future research to 
deploy distributed computing environments, effectively reducing algorithmic time complexity. This 
will involve designing larger-scale Stacking models for improved transformer oil temperature 
prediction. 
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